Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#274 Remove all elasticsearch references

Merged
GitHub User merged 1 commits into Deci-AI:master from deci-ai:feature/LAB-0000_remove_elasticsearch_references
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  1. # ResNet50 Imagenet classification training:
  2. # This example trains with batch_size = 64 * 4 GPUs, total 256.
  3. # Training time on 4 x GeForce RTX A5000 is 15min / epoch.
  4. # Reach => 79.47 Top1 accuracy.
  5. #
  6. # Log and tensorboard at s3://deci-pretrained-models/ResNet50_ImageNet/average_model.pth
  7. # Instructions:
  8. # running from the command line, set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
  9. # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/
  10. # Then:
  11. # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_resnet50
  12. defaults:
  13. - training_hyperparams: imagenet_resnet50_train_params
  14. - dataset_params: imagenet_dataset_params
  15. - arch_params: resnet50_arch_params
  16. - checkpoint_params: default_checkpoint_params
  17. arch_params:
  18. droppath_prob: 0.05
  19. dataset_params:
  20. resize_size: 236
  21. random_erase_prob: 0
  22. random_erase_value: random
  23. train_interpolation: random
  24. rand_augment_config_string: rand-m7-mstd0.5
  25. cutmix: True
  26. cutmix_params:
  27. mixup_alpha: 0.2
  28. cutmix_alpha: 1.0
  29. label_smoothing: 0.1
  30. dataset_interface:
  31. imagenet:
  32. dataset_params: ${dataset_params}
  33. data_loader_num_workers: 8
  34. model_checkpoints_location: local
  35. load_checkpoint: False
  36. checkpoint_params:
  37. load_checkpoint: ${load_checkpoint}
  38. experiment_name: resnet50_imagenet
  39. ckpt_root_dir:
  40. multi_gpu:
  41. _target_: super_gradients.training.sg_model.MultiGPUMode
  42. value: 'DDP'
  43. sg_model:
  44. _target_: super_gradients.SgModel
  45. experiment_name: ${experiment_name}
  46. model_checkpoints_location: ${model_checkpoints_location}
  47. ckpt_root_dir: ${ckpt_root_dir}
  48. multi_gpu: ${multi_gpu}
  49. architecture: resnet50
Discard
Tip!

Press p or to see the previous file or, n or to see the next file