Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:feature/LAB-0000_remove_elasticsearch_references
# ResNet50 Imagenet classification training: # This example trains with batch_size = 64 * 4 GPUs, total 256. # Training time on 4 x GeForce RTX A5000 is 15min / epoch. # Reach => 79.47 Top1 accuracy. # # Log and tensorboard at s3://deci-pretrained-models/ResNet50_ImageNet/average_model.pth # Instructions: # running from the command line, set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo): # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/ # Then: # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_resnet50 defaults: - training_hyperparams: imagenet_resnet50_train_params - dataset_params: imagenet_dataset_params - arch_params: resnet50_arch_params - checkpoint_params: default_checkpoint_params arch_params: droppath_prob: 0.05 dataset_params: resize_size: 236 random_erase_prob: 0 random_erase_value: random train_interpolation: random rand_augment_config_string: rand-m7-mstd0.5 cutmix: True cutmix_params: mixup_alpha: 0.2 cutmix_alpha: 1.0 label_smoothing: 0.1 dataset_interface: imagenet: dataset_params: ${dataset_params} data_loader_num_workers: 8 model_checkpoints_location: local load_checkpoint: False checkpoint_params: load_checkpoint: ${load_checkpoint} experiment_name: resnet50_imagenet ckpt_root_dir: multi_gpu: _target_: super_gradients.training.sg_model.MultiGPUMode value: 'DDP' sg_model: _target_: super_gradients.SgModel experiment_name: ${experiment_name} model_checkpoints_location: ${model_checkpoints_location} ckpt_root_dir: ${ckpt_root_dir} multi_gpu: ${multi_gpu} architecture: resnet50
Press p or to see the previous file or, n or to see the next file