Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#274 Remove all elasticsearch references

Merged
Ofri Masad merged 1 commits into Deci-AI:master from deci-ai:feature/LAB-0000_remove_elasticsearch_references
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  1. # RegnetY Imagenet classification training:
  2. # This example trains with batch_size = 256
  3. # Training time on a single GeForce RTX 2080 Ti, and top1 accuracies:
  4. # 11 days for RegnetY200, 70.88
  5. # 12 days for RegnetY400, 74.74
  6. # 19 days for RegnetY600, 76.18
  7. # 20 days for RegnetY800, 77.07
  8. # NOTE: Training should probably be lower as resources were shared among the above runs.
  9. # Logs and tensorboards at:
  10. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY800/
  11. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY600/
  12. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY400/
  13. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY200/
  14. # Instructions:
  15. # Set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
  16. # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/:"YOUR_LOCAL_PATH"/super_gradients/src/
  17. # Then:
  18. # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY200 experiment_name: regnetY200_imagenet
  19. # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY400 experiment_name: regnetY400_imagenet
  20. # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY600 experiment_name: regnetY600_imagenet
  21. # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY800 experiment_name: regnetY800_imagenet
  22. defaults:
  23. - training_hyperparams: imagenet_regnetY_train_params
  24. - dataset_params: imagenet_dataset_params
  25. - arch_params: regnetY_arch_params
  26. - checkpoint_params: default_checkpoint_params
  27. arch_params:
  28. num_classes: 1000
  29. dropout_prob: 0.5
  30. droppath_prob: 0.0
  31. dataset_params:
  32. batch_size: 256
  33. color_jitter: 0.4
  34. random_erase_prob: 0.2
  35. random_erase_value: random
  36. train_interpolation: random
  37. auto_augment_config_string: rand-m9-mstd0.5
  38. dataset_interface:
  39. _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.ImageNetDatasetInterface
  40. dataset_params: ${dataset_params}
  41. data_dir: /data/Imagenet
  42. data_loader_num_workers: 8
  43. model_checkpoints_location: local
  44. load_checkpoint: False
  45. checkpoint_params:
  46. load_checkpoint: ${load_checkpoint}
  47. experiment_name: regnetY800_imagenet
  48. ckpt_root_dir:
  49. multi_gpu:
  50. _target_: super_gradients.training.sg_model.MultiGPUMode
  51. value: 'Off'
  52. sg_model:
  53. _target_: super_gradients.SgModel
  54. experiment_name: ${experiment_name}
  55. model_checkpoints_location: ${model_checkpoints_location}
  56. ckpt_root_dir: ${ckpt_root_dir}
  57. multi_gpu: ${multi_gpu}
  58. architecture: regnetY800
Discard
Tip!

Press p or to see the previous file or, n or to see the next file