Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:feature/LAB-0000_remove_elasticsearch_references
# RegnetY Imagenet classification training: # This example trains with batch_size = 256 # Training time on a single GeForce RTX 2080 Ti, and top1 accuracies: # 11 days for RegnetY200, 70.88 # 12 days for RegnetY400, 74.74 # 19 days for RegnetY600, 76.18 # 20 days for RegnetY800, 77.07 # NOTE: Training should probably be lower as resources were shared among the above runs. # Logs and tensorboards at: # https://deci-pretrained-models.s3.amazonaws.com/RegnetY800/ # https://deci-pretrained-models.s3.amazonaws.com/RegnetY600/ # https://deci-pretrained-models.s3.amazonaws.com/RegnetY400/ # https://deci-pretrained-models.s3.amazonaws.com/RegnetY200/ # Instructions: # Set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo): # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/:"YOUR_LOCAL_PATH"/super_gradients/src/ # Then: # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY200 experiment_name: regnetY200_imagenet # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY400 experiment_name: regnetY400_imagenet # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY600 experiment_name: regnetY600_imagenet # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture: regnetY800 experiment_name: regnetY800_imagenet defaults: - training_hyperparams: imagenet_regnetY_train_params - dataset_params: imagenet_dataset_params - arch_params: regnetY_arch_params - checkpoint_params: default_checkpoint_params arch_params: num_classes: 1000 dropout_prob: 0.5 droppath_prob: 0.0 dataset_params: batch_size: 256 color_jitter: 0.4 random_erase_prob: 0.2 random_erase_value: random train_interpolation: random auto_augment_config_string: rand-m9-mstd0.5 dataset_interface: _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.ImageNetDatasetInterface dataset_params: ${dataset_params} data_dir: /data/Imagenet data_loader_num_workers: 8 model_checkpoints_location: local load_checkpoint: False checkpoint_params: load_checkpoint: ${load_checkpoint} experiment_name: regnetY800_imagenet ckpt_root_dir: multi_gpu: _target_: super_gradients.training.sg_model.MultiGPUMode value: 'Off' sg_model: _target_: super_gradients.SgModel experiment_name: ${experiment_name} model_checkpoints_location: ${model_checkpoints_location} ckpt_root_dir: ${ckpt_root_dir} multi_gpu: ${multi_gpu} architecture: regnetY800
Press p or to see the previous file or, n or to see the next file