Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#274 Remove all elasticsearch references

Merged
Ofri Masad merged 1 commits into Deci-AI:master from deci-ai:feature/LAB-0000_remove_elasticsearch_references
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
  1. # STDC segmentation training example with Cityscapes dataset.
  2. # Reproduction and refinement of paper: Rethinking BiSeNet For Real-time Semantic Segmentation.
  3. #
  4. # Usage STDC1-Seg50:
  5. # python -m torch.distributed.launch --nproc_per_node=2 train_from_recipe.py --config-name=cityscapes_stdc_seg50 checkpoint_params.external_checkpoint_path=<stdc1-backbone-pretrained-path>
  6. # Usage STDC2-Seg50:
  7. # python -m torch.distributed.launch --nproc_per_node=2 train_from_recipe.py --config-name=cityscapes_stdc_seg50 checkpoint_params.external_checkpoint_path=<stdc1-backbone-pretrained-path> architecture=stdc2_seg
  8. #
  9. #
  10. # Validation mIoU - Cityscapes, training time:
  11. # STDC1-Seg50: input-size: [512, 1024] mIoU: 75.11 2 X RTX A5000, 20 H
  12. # STDC2-Seg50: input-size: [512, 1024] mIoU: 76.44 2 X RTX A5000, 23 H
  13. #
  14. # Official git repo:
  15. # https://github.com/MichaelFan01/STDC-Seg
  16. # Paper:
  17. # https://arxiv.org/abs/2104.13188
  18. #
  19. # Pretrained checkpoints:
  20. # Backbones- downloaded from the author's official repo.
  21. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth
  22. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth
  23. #
  24. # Logs, tensorboards and network checkpoints:
  25. # STDC1-Seg50: https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc1_seg50_dice_edge/
  26. # STDC2-Seg50: https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc2_seg50_dice_edge/
  27. #
  28. # Learning rate and batch size parameters, using 2 RTX A5000 with DDP:
  29. # STDC1-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 16 * 2gpus = 32
  30. # STDC2-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 16 * 2gpus = 32
  31. #
  32. # Comments:
  33. # * Pretrained backbones were used.
  34. defaults:
  35. - cityscapes_stdc_base
  36. - _self_
  37. dataset_params:
  38. _convert_: all
  39. batch_size: 16
  40. val_batch_size: 16
  41. crop_size: [1024, 512]
  42. eval_scale: 0.5
  43. random_scales: [ 0.125, 1.5 ]
  44. training_hyperparams:
  45. loss:
  46. dice_ce_edge_loss:
  47. num_classes: 19
  48. ignore_index: 19
  49. weights: [ 1., 0.6, 0.4, 1. ]
  50. dice_ce_weights: [ 1., 1. ]
  51. ce_edge_weights: [ .5, .5 ]
  52. edge_kernel: 3
  53. experiment_name: ${architecture}50_cityscapes
Discard
Tip!

Press p or to see the previous file or, n or to see the next file