1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
- # STDC segmentation training example with Cityscapes dataset.
- # Reproduction and refinement of paper: Rethinking BiSeNet For Real-time Semantic Segmentation.
- #
- # Usage STDC1-Seg50:
- # python -m torch.distributed.launch --nproc_per_node=2 train_from_recipe.py --config-name=cityscapes_stdc_seg50 checkpoint_params.external_checkpoint_path=<stdc1-backbone-pretrained-path>
- # Usage STDC2-Seg50:
- # python -m torch.distributed.launch --nproc_per_node=2 train_from_recipe.py --config-name=cityscapes_stdc_seg50 checkpoint_params.external_checkpoint_path=<stdc1-backbone-pretrained-path> architecture=stdc2_seg
- #
- #
- # Validation mIoU - Cityscapes, training time:
- # STDC1-Seg50: input-size: [512, 1024] mIoU: 75.11 2 X RTX A5000, 20 H
- # STDC2-Seg50: input-size: [512, 1024] mIoU: 76.44 2 X RTX A5000, 23 H
- #
- # Official git repo:
- # https://github.com/MichaelFan01/STDC-Seg
- # Paper:
- # https://arxiv.org/abs/2104.13188
- #
- # Pretrained checkpoints:
- # Backbones- downloaded from the author's official repo.
- # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth
- # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth
- #
- # Logs, tensorboards and network checkpoints:
- # STDC1-Seg50: https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc1_seg50_dice_edge/
- # STDC2-Seg50: https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc2_seg50_dice_edge/
- #
- # Learning rate and batch size parameters, using 2 RTX A5000 with DDP:
- # STDC1-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 16 * 2gpus = 32
- # STDC2-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 16 * 2gpus = 32
- #
- # Comments:
- # * Pretrained backbones were used.
- defaults:
- - cityscapes_stdc_base
- - _self_
- dataset_params:
- _convert_: all
- batch_size: 16
- val_batch_size: 16
- crop_size: [1024, 512]
- eval_scale: 0.5
- random_scales: [ 0.125, 1.5 ]
- training_hyperparams:
- loss:
- dice_ce_edge_loss:
- num_classes: 19
- ignore_index: 19
- weights: [ 1., 0.6, 0.4, 1. ]
- dice_ce_weights: [ 1., 1. ]
- ce_edge_weights: [ .5, .5 ]
- edge_kernel: 3
- experiment_name: ${architecture}50_cityscapes
|