Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:feature/SG-175_New_NMS
# STDC segmentation training example with Cityscapes dataset. # Reproduction and refinement of paper: Rethinking BiSeNet For Real-time Semantic Segmentation. # # Usage STDC1-Seg50: # python -m torch.distributed.launch --nproc_per_node=4 train_from_recipe.py --config-name=cityscapes_stdc_seg50 external_checkpoint_path=<stdc1-backbone-pretrained-path> # Usage STDC2-Seg50: # python -m torch.distributed.launch --nproc_per_node=4 train_from_recipe.py --config-name=cityscapes_stdc_seg50 external_checkpoint_path=<stdc2-backbone-pretrained-path> architecture=stdc2_seg # # # Validation mIoU - Cityscapes, training time: # STDC1-Seg50: input-size: [512, 1024] mIoU: 74.36 4 X RTX A5000, 12 H # STDC2-Seg50: input-size: [512, 1024] mIoU: 75.27 4 X RTX A5000, 13 H # # Official git repo: # https://github.com/MichaelFan01/STDC-Seg # Paper: # https://arxiv.org/abs/2104.13188 # # Pretrained checkpoints: # Backbones- downloaded from the author's official repo. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth # # Logs, tensorboards and network checkpoints: # https://deci-pretrained-models.s3.amazonaws.com/stdc1_seg50/ # https://deci-pretrained-models.s3.amazonaws.com/stdc2_seg50_cityscapes/ # # # Learning rate and batch size parameters, using 4 GeForce RTX 2080 Ti with DDP: # STDC1-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 8 * 4gpus = 32 # STDC2-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 8 * 4gpus = 32 # # Comments: # * Pretrained backbones were used. # * Results with Deci code are higher than original implementation, mostly thanks to changes in Detail loss and # module, different auxiliary feature maps and different loss weights. defaults: - training_hyperparams: cityscapes_stdc_train_params - dataset_params: cityscapes_dataset_params - checkpoint_params: default_checkpoint_params dataset_params: _convert_: all batch_size: 8 val_batch_size: 8 crop_size: - 1024 - 512 eval_scale: 0.5 image_mask_transforms_aug: Compose: transforms: - ColorJitterSeg: brightness: 0.5 contrast: 0.5 saturation: 0.5 - RandomFlipSeg - RandomRescaleSeg: scales: - 0.125 - 1.5 - PadShortToCropSizeSeg: crop_size: ${dataset_params.crop_size} fill_mask: ${dataset_params.cityscapes_ignored_label} - CropImageAndMaskSeg: crop_size: ${dataset_params.crop_size} mode: random image_mask_transforms: Compose: transforms: - RescaleSeg: scale_factor: ${dataset_params.eval_scale} dataset_interface: cityscapes: dataset_params: ${dataset_params} data_loader_num_workers: 10 arch_params: num_classes: 19 use_aux_heads: True sync_bn: True load_checkpoint: False checkpoint_params: load_checkpoint: ${load_checkpoint} external_checkpoint_path: load_backbone: True load_weights_only: True strict_load: no_key_matching architecture: stdc1_seg experiment_name: ${architecture}50_cityscapes model_checkpoints_location: local ckpt_root_dir: multi_gpu: _target_: super_gradients.training.sg_model.MultiGPUMode value: 'DDP' sg_model: _target_: super_gradients.SgModel experiment_name: ${experiment_name} model_checkpoints_location: ${model_checkpoints_location} ckpt_root_dir: ${ckpt_root_dir} multi_gpu: ${multi_gpu}
Press p or to see the previous file or, n or to see the next file