Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#260 feature/SG-175 New NMS

Merged
Ofri Masad merged 1 commits into Deci-AI:master from deci-ai:feature/SG-175_New_NMS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  1. # STDC segmentation training example with Cityscapes dataset.
  2. # Reproduction and refinement of paper: Rethinking BiSeNet For Real-time Semantic Segmentation.
  3. #
  4. # Usage STDC1-Seg50:
  5. # python -m torch.distributed.launch --nproc_per_node=4 train_from_recipe.py --config-name=cityscapes_stdc_seg50 external_checkpoint_path=<stdc1-backbone-pretrained-path>
  6. # Usage STDC2-Seg50:
  7. # python -m torch.distributed.launch --nproc_per_node=4 train_from_recipe.py --config-name=cityscapes_stdc_seg50 external_checkpoint_path=<stdc2-backbone-pretrained-path> architecture=stdc2_seg
  8. #
  9. #
  10. # Validation mIoU - Cityscapes, training time:
  11. # STDC1-Seg50: input-size: [512, 1024] mIoU: 74.36 4 X RTX A5000, 12 H
  12. # STDC2-Seg50: input-size: [512, 1024] mIoU: 75.27 4 X RTX A5000, 13 H
  13. #
  14. # Official git repo:
  15. # https://github.com/MichaelFan01/STDC-Seg
  16. # Paper:
  17. # https://arxiv.org/abs/2104.13188
  18. #
  19. # Pretrained checkpoints:
  20. # Backbones- downloaded from the author's official repo.
  21. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth
  22. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth
  23. #
  24. # Logs, tensorboards and network checkpoints:
  25. # https://deci-pretrained-models.s3.amazonaws.com/stdc1_seg50/
  26. # https://deci-pretrained-models.s3.amazonaws.com/stdc2_seg50_cityscapes/
  27. #
  28. #
  29. # Learning rate and batch size parameters, using 4 GeForce RTX 2080 Ti with DDP:
  30. # STDC1-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 8 * 4gpus = 32
  31. # STDC2-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 8 * 4gpus = 32
  32. #
  33. # Comments:
  34. # * Pretrained backbones were used.
  35. # * Results with Deci code are higher than original implementation, mostly thanks to changes in Detail loss and
  36. # module, different auxiliary feature maps and different loss weights.
  37. defaults:
  38. - training_hyperparams: cityscapes_stdc_train_params
  39. - dataset_params: cityscapes_dataset_params
  40. - checkpoint_params: default_checkpoint_params
  41. dataset_params:
  42. _convert_: all
  43. batch_size: 8
  44. val_batch_size: 8
  45. crop_size:
  46. - 1024
  47. - 512
  48. eval_scale: 0.5
  49. image_mask_transforms_aug:
  50. Compose:
  51. transforms:
  52. - ColorJitterSeg:
  53. brightness: 0.5
  54. contrast: 0.5
  55. saturation: 0.5
  56. - RandomFlipSeg
  57. - RandomRescaleSeg:
  58. scales:
  59. - 0.125
  60. - 1.5
  61. - PadShortToCropSizeSeg:
  62. crop_size: ${dataset_params.crop_size}
  63. fill_mask: ${dataset_params.cityscapes_ignored_label}
  64. - CropImageAndMaskSeg:
  65. crop_size: ${dataset_params.crop_size}
  66. mode: random
  67. image_mask_transforms:
  68. Compose:
  69. transforms:
  70. - RescaleSeg:
  71. scale_factor: ${dataset_params.eval_scale}
  72. dataset_interface:
  73. cityscapes:
  74. dataset_params: ${dataset_params}
  75. data_loader_num_workers: 10
  76. arch_params:
  77. num_classes: 19
  78. use_aux_heads: True
  79. sync_bn: True
  80. load_checkpoint: False
  81. checkpoint_params:
  82. load_checkpoint: ${load_checkpoint}
  83. external_checkpoint_path:
  84. load_backbone: True
  85. load_weights_only: True
  86. strict_load: no_key_matching
  87. architecture: stdc1_seg
  88. experiment_name: ${architecture}50_cityscapes
  89. model_checkpoints_location: local
  90. ckpt_root_dir:
  91. multi_gpu:
  92. _target_: super_gradients.training.sg_model.MultiGPUMode
  93. value: 'DDP'
  94. sg_model:
  95. _target_: super_gradients.SgModel
  96. experiment_name: ${experiment_name}
  97. model_checkpoints_location: ${model_checkpoints_location}
  98. ckpt_root_dir: ${ckpt_root_dir}
  99. multi_gpu: ${multi_gpu}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file