Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:feature/SG-184_external_optimizer
""" ResNet50 Imagenet classification training: This example trains with batch_size = 64 * 4 GPUs, total 256. Training times: ResNet18: 36 hours with 4 X NVIDIA RTX A5000. ResNet34: 36 hours with 4 X NVIDIA RTX A5000. ResNet50: 46 hours with 4 X GeForce RTX 3090 Ti. Top1, Top5 results: ResNet18: Top1: 70.60 Top5: 89.64 ResNet34: Top1: 74.13 Top5: 91.70 ResNet50: Top1: 76.30 Top5: 93.03 BE AWARE THAT THIS RECIPE USE DATA_PARALLEL, WHEN USING DDP FOR DISTRIBUTED TRAINING THIS RECIPE REACH ONLY 75.4 TOP1 ACCURACY. """ import super_gradients from omegaconf import DictConfig import hydra import pkg_resources @hydra.main(config_path=pkg_resources.resource_filename("conf", ""), config_name="imagenet_resnet50_conf") def train(cfg: DictConfig) -> None: # INSTANTIATE ALL OBJECTS IN CFG cfg = hydra.utils.instantiate(cfg) # CONNECT THE DATASET INTERFACE WITH DECI MODEL cfg.sg_model.connect_dataset_interface(cfg.dataset_interface, data_loader_num_workers=cfg.data_loader_num_workers) # BUILD NETWORK cfg.sg_model.build_model(cfg.architecture, arch_params=cfg.arch_params, load_checkpoint=cfg.load_checkpoint) # TRAIN cfg.sg_model.train(training_params=cfg.training_params) if __name__ == "__main__": super_gradients.init_trainer() train()
Press p or to see the previous file or, n or to see the next file