Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:feature/SG-136_use_ema_only_on_kd_student
# Efficientnet-B0 Imagenet training # This example trains with effective batch size = 64 * 4 gpus = 256. # Epoch time on 4 X 3090Ti distributed training is ~ 16:25 minutes # Logs and tensorboards: s3://deci-pretrained-models/efficientnet_b0/ # Instructions: # Set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo): # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/:"YOUR_LOCAL_PATH"/super_gradients/src/ # Then: # # python -m torch.distributed.launch --nproc_per_node=4 train_from_recipe.py --config-name=imagenet_efficientnet defaults: - training_hyperparams: imagenet_efficientnet_train_params - dataset_params: imagenet_dataset_params - arch_params: efficientnet_b0_arch_params - checkpoint_params: default_checkpoint_params arch_params: num_classes: 1000 dataset_params: batch_size: 64 color_jitter: 0.4 random_erase_prob: 0.2 random_erase_value: random train_interpolation: random auto_augment_config_string: rand-m9-mstd0.5 dataset_interface: _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.ImageNetDatasetInterface dataset_params: ${dataset_params} data_dir: /data/Imagenet data_loader_num_workers: 8 load_checkpoint: False checkpoint_params: load_checkpoint: ${load_checkpoint} experiment_name: efficientnet_b0_imagenet model_checkpoints_location: local ckpt_root_dir: multi_gpu: _target_: super_gradients.training.sg_model.MultiGPUMode value: 'DDP' sg_model: _target_: super_gradients.SgModel experiment_name: ${experiment_name} model_checkpoints_location: ${model_checkpoints_location} ckpt_root_dir: ${ckpt_root_dir} multi_gpu: ${multi_gpu} architecture: efficientnet_b0
Press p or to see the previous file or, n or to see the next file