1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
- # Yolo v5 Detection training on CoCo2017 Dataset:
- # Yolo v5s trained in 640x640 mAP@0.5-0.95 (COCO API, confidence 0.001, IoU threshold 0.6, test on 640x640 images) ~37.3
- # Checkpoint path: s3://deci-model-repository-research/reproduce-yolo/yolos_new_640/ckpt_best.pth
- # Hardware: 1 3090Ti GPU
- #
- # Instructions:
- # Set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
- # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/
- # python3 train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolov5.yaml \
- # dataset_params.train_image_size=640 dataset_params.val_image_size=640 \
- # dataset_params.batch_size=64 dataset_params.val_batch_size=64 \
- # architecture=yolo_v5s experiment_name=yolo_v5s_coco2017_640 \
- # training_hyperparams.mixed_precision=true dataset_params.val_sample_loading_method=rectangular multi_gpu=Off
- defaults:
- - training_hyperparams: coco2017_yolov5_train_params
- - dataset_params: coco_detection_dataset_params
- - arch_params: yolov5s_arch_params
- - checkpoint_params: default_checkpoint_params
- dataset_interface:
- _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.CoCoDetectionDatasetInterface
- dataset_params: ${dataset_params}
- data_loader_num_workers: 8
- load_checkpoint: False
- checkpoint_params:
- load_checkpoint: ${load_checkpoint}
- architecture: yolo_v5s
- experiment_name: ${architecture}_coco2017_320
- multi_gpu:
- _target_: super_gradients.training.sg_model.MultiGPUMode
- value: 'DDP'
- ckpt_root_dir:
- model_checkpoints_location: local
- sg_model:
- _target_: super_gradients.SgModel
- experiment_name: ${experiment_name}
- model_checkpoints_location: ${model_checkpoints_location}
- ckpt_root_dir: ${ckpt_root_dir}
- multi_gpu: ${multi_gpu}
- training_hyperparams:
- criterion_params:
- anchors:
- _target_: super_gradients.training.utils.detection_utils.Anchors
- anchors_list: [[10, 13, 16, 30, 33, 23],[30, 61, 62, 45, 59, 119],[116, 90, 156, 198, 373, 326]]
- strides: [8, 16, 32] # output strides of all yolo outputs
- obj_loss_gain: 1.0 # will be scaled according to train image size
- box_loss_gain: 0.05 # will be scaled according to num output levels
- cls_loss_gain: 0.5 # will be scaled according to num classes and num output levels
|