Photo by DeepMind on Unsplash

NOAA Operational Forecast System (OFS) Dataset for Machine Learning

Install DagsHub:

pip install dagshub
Click on copy button to copy content

To stream this data directly on DagsHub

from dagshub.streaming import DagsHubFilesystem

fs = DagsHubFilesystem(".", repo_url="https://dagshub.com/DagsHub-Datasets/noaa-ofs-dataset")

fs.listdir("s3://noaa-ofs-pds")
Click on copy button to copy content

Description

ANNOUNCEMENTS: NOS OFS Version Updates and Implementation of Upgraded Oceanographic Forecast Modeling Systems for Lakes Superior and Ontario; Effective October 25, 2022}(https://www.weather.gov/media/notification/pdf2/scn22-91_nos_loofs_lsofs_v3.pdf)

For decades, mariners in the United States have depended on NOAA’s Tide Tables for the best estimate of expected water levels. These tables provide accurate predictions of the astronomical tide (i.e., the change in water level due to the gravitational effects of the moon and sun and the rotation of the Earth); however, they cannot predict water-level changes due to wind, atmospheric pressure, and river flow, which are often significant.

The National Ocean Service (NOS) has the mission and mandate to provide guidance and information to support navigation and coastal needs. To support this mission, NOS has been developing and implementing hydrodynamic model-based [Operational Forecast Systems.

This forecast guidance provides oceanographic information that helps mariners safely navigate their local waters. This national network of hydrodynamic models provides users with operational nowcast and forecast guidance (out to 48 – 120 hours) on parameters such as water levels, water temperature, salinity, and currents. These forecast systems are implemented in critical ports, harbors, estuaries, Great Lakes and coastal waters of the United States, and form a national backbone of real-time data, tidal predictions, data management and operational modeling.

Nowcasts and forecasts are scientific predictions about the present and future states of water levels (and possibly currents and other relevant oceanographic variables, such as salinity and temperature) in a coastal area. These predictions rely on either observed data or forecasts from a numerical model. A nowcast incorporates recent (and often near real-time) observed meteorological, oceanographic, and/or river flow rate data. A nowcast covers the period from the recent past (e.g., the past few days) to the present, and it can make predictions for locations where observational data are not available. A forecast incorporates meteorological, oceanographic, and/or river flow rate forecasts and makes predictions for times where observational data will not be available. A forecast is usually initiated by the results of a nowcast.

OFS generally runs four times per day (every 6 hours) on NOAA’s Weather and Climate Operational Supercomputing Systems (WCOSS) in a standard Coastal Ocean Modeling Framework (COMF) developed by the Center for Operational Oceanographic Products and Services (CO-OPS). COMF is a set of standards and tools for developing and maintaining NOS’s hydrodynamic model–based operational forecast systems. The goal of COMF is to provide a standard and comprehensive software infrastructure to enhance ease of use, performance, portability, and interoperability of NOS’s operational forecast systems.

Additional information

Update frequency

4 times a day, every 6 hours with 6-hour nowcasts (WCOFS is updated once a day with 24-hour nowcast) and 48- to 120-hour forecast guidance.

License

Open Data. There are no restrictions on the use of this data.

Related datasets

Atmospheric Models from Météo-France

CAFE60 reanalysis

Coupled Model Intercomparison Project Phase 5 (CMIP5) University of Wisconsin-Madison Probabilistic Downscaling Dataset

Earth Radio Occultation

Launch your ML development to new heights with DagsHub

Back to top