Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#381 Feature/sg 000 connect to lab

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/sg-000_connect_to_lab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
  1. # Shelfnet34_lw recipe for COCO segmentation 21 classes from PASCAL.
  2. # Reaches ~65.1 mIOU
  3. # Trained using 4 X 2080 Ti using DDP- takes ~ 2d 7h with batch size of 8 and batch accumulate of 3 (i.e effective batch
  4. # size is 4*8*3 = 96)
  5. # Logs and tensorboards: s3://deci-pretrained-models/shelfnet34_coco_segmentation_tensorboard/
  6. # Instructions:
  7. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  8. # 1. Move to the project root (where you will find the ReadMe and src folder)
  9. # 2. Run the command:
  10. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco_segmentation_shelfnet_lw --model_checkpoints_location=<checkpoint-location>
  11. # /!\ THIS RECIPE IS NOT SUPPORTED AT THE MOMENT /!\
  12. defaults:
  13. - training_hyperparams: coco_segmentation_shelfnet_lw_train_params
  14. - dataset_params: coco_segmentation_dataset_params
  15. - arch_params: shelfnet34_lw_arch_params
  16. - checkpoint_params: default_checkpoint_params
  17. - _self_
  18. train_dataloader: coco_segmentation_train
  19. val_dataloader: coco_segmentation_val
  20. checkpoint_params:
  21. strict_load: True
  22. load_backbone: True
  23. checkpoint_path:
  24. resume: False
  25. training_hyperparams:
  26. resume: ${resume}
  27. experiment_name: coco_segmentation_21_subclass_shelfnet34
  28. multi_gpu: DDP
  29. num_gpus: 4
  30. ckpt_root_dir:
  31. architecture: shelfnet34_lw
  32. hydra:
  33. run:
  34. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file