Module imodels.util
Shared utilities for implementing different interpretable models.
Expand source code
'''Shared utilities for implementing different interpretable models.
'''
Sub-modules
imodels.util.convert
imodels.util.discretization
-
Discretization MDLP Python implementation of Fayyad and Irani's MDLP criterion discretiation algorithm …
imodels.util.evaluate
imodels.util.metrics
imodels.util.neural_nets
-
Bridging random forests and deep neural networks. Code to convert a sklearn decision tree to a pytorch neural network following "Neural Random …
imodels.util.prune
imodels.util.rule
imodels.util.score
imodels.util.transforms
-
Shared transforms between different interpretable models