|
2 months ago | |
---|---|---|
.dvc | 1 year ago | |
data | 2 months ago | |
models | 2 months ago | |
notebooks | 1 year ago | |
references | 1 year ago | |
reports | 1 year ago | |
src | 1 year ago | |
.gitattributes | 1 year ago | |
.gitignore | 2 months ago | |
LICENSE | 1 year ago | |
Makefile | 1 year ago | |
README.md | 2 months ago | |
eval.dvc | 1 year ago | |
process_data.dvc | 1 year ago | |
raw_data.dvc | 1 year ago | |
requirements.txt | 1 year ago | |
setup.py | 1 year ago | |
tox.ini | 1 year ago | |
train.dvc | 1 year ago |
Legend |
---|
DVC Managed File |
Git Managed File |
Metric |
Stage File |
External File |
Legend |
---|
DVC Managed File |
Git Managed File |
Metric |
Stage File |
External File |
An example of the Cookiecutter DVC project template / by Escuelita Chilota.
make dirs
to create the missing parts of the directory structure described below.make virtualenv
to create a python virtual environment. Skip if using conda or some other env manager.
source env/bin/activate
to activate the virtualenv.make requirements
to install required python packages.data/raw
.dvc commit raw_data.dvc
dvc repro eval.dvc
or make reproduce
├── LICENSE
├── Makefile <- Makefile with commands like `make dirs` or `make clean`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── eval.dvc <- The end of the data pipeline - evaluates the trained model on the test dataset.
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── process_data.dvc <- Process the raw data and prepare it for training.
├── raw_data.dvc <- Keeps the raw data versioned.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│ └── metrics.txt <- Relevant metrics after evaluating the model.
│ └── training_metrics.txt <- Relevant metrics from training the model.
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
├── tox.ini <- tox file with settings for running tox; see tox.testrun.org
└── train.dvc <- Traing a model on the processed data.
Project based on the cookiecutter data science project template. #cookiecutterdatascience
To create a project like this, just go to https://dagshub.com/repo/create and select the Cookiecutter DVC project template.
Made with 🐶 by DAGsHub.